Rapid Communication CD11b/CD18 Mediates Production of Reactive Oxygen Species by Mouse and Human Macrophages Adherent to Matrixes Containing Oxidized LDL
نویسندگان
چکیده
Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages adherent to matrix proteins that contain or have been modified by oxidized LDL (oxLDL) may play an important role in atherogenesis. In vitro, human macrophages adhere to matrixes containing oxLDL via scavenger receptors and are signaled to produce ROS partly by interactions of the class B scavenger receptor (SR-B) CD36 with ligands on the matrix. In this report, we show that macrophages from mice genetically deficient in SR-A or CD36 adhered equally as well and produced equal amounts of ROS on interaction with matrix-associated oxLDL. In contrast, macrophages from mice genetically deficient in the CD18 chain of b2-integrins produced insignificant amounts of ROS on interaction with oxLDL-containing matrixes, even though they adhered to these matrixes as efficiently as did macrophages from wild-type mice. Antibodies against CD18, CD11b, or EDTA, the last of which chelates divalent cations required for integrin function, had no effect on adhesion of normal mouse or human macrophages to matrixes containing oxLDL but almost completely inhibited ROS production by macrophages adherent to this matrix. Thus, CD11b/CD18 plays an important role in regulating production of ROS by mouse and human macrophages adherent to matrixes containing oxLDL. It may play a hitherto-unsuspected role in regulating macrophage signaling pathways involved in inflammation and atherogenesis. (Arterioscler Thromb Vasc Biol. 2001;21:1301-1305.)
منابع مشابه
CD11b/CD18 mediates production of reactive oxygen species by mouse and human macrophages adherent to matrixes containing oxidized LDL.
Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages adherent to matrix proteins that contain or have been modified by oxidized LDL (oxLDL) may play an important role in atherogenesis. In vitro, human macrophages adhere to matrixes containing oxLDL via scavenger receptors and are signaled to produce ROS partly by interactions of the class B scavenger r...
متن کاملRecombinant Human Thioredoxin-1 Protects Macrophages from Oxidized Low-Density Lipoprotein-Induced Foam Cell Formation and Cell Apoptosis
Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and apoptosis play critical roles in the pathogenesis of atherosclerosis. Thioredoxin-1 (Trx) is an antioxidant that potently protects various cells from oxidative stress-induced cell death. However, the protective effect of Trx on ox-LDL-induced macrophage foam cell formation and apoptosis has not been studied. Th...
متن کاملCD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double-stranded RNA to mediate cellular inflammatory responses.
During viral infection, extracellular dsRNA is a potent signaling molecule that activates many innate immune cells, including macrophages. TLR3 is a well-known receptor for extracellular dsRNA, and internalization of extracellular dsRNA is required for endosomal TLR3 activation. Preserved inflammatory responses of TLR3-deficient macrophages to extracellular dsRNA strongly support a TLR3-indepen...
متن کاملOxidative response of human neutrophils, monocytes, and alveolar macrophages induced by unopsonized surface-adherent Staphylococcus aureus.
In contrast to results with bacterial suspensions, phagocytosis of unopsonized bacteria readily occurs when bacteria are adhered to glass or plastic surfaces. However, in contrast to neutrophils, alveolar macrophages produced much less DNA denaturation as measured by acridine orange metachromasia of phagocytized Staphylococcus aureus. We have studied the phagocytosis of unopsonized surface-adhe...
متن کاملLipoxin A₄ inhibits porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil-platelet interaction and CD11b expression.
Porphyromonas gingivalis is an etiological agent that is strongly associated with periodontal disease, and it correlates with numerous inflammatory disorders, such as cardiovascular disease. Circulating bacteria may contribute to atherogenesis by promoting CD11b/CD18-mediated interactions between neutrophils and platelets, causing reactive oxygen species (ROS) production and aggregation. Lipoxi...
متن کامل